Lecture Notes

New Keynesian Economics

David McCarthy*

This version: February 12, 2024

[^0]
Contents

1 Introduction 3
2 The Basic New Keynesian Model 4
2.1 Households 4
2.1.1 Intratemporal Household Problem: Allocation of expenditures 5
2.1.2 Inter-Temporal Household Problem 7
2.1.3 Linearized Optimality Conditions 7
2.1.4 Natural Equilibrium 8
2.1.5 Dynamic IS Curve 8
2.2 Firms 9
2.2.1 Aggregate price dynamics 9
2.2.2 Optimal Price Setting 10
2.2.3 Linearize Pricing Rule 11
2.2.4 New Keynesian Philips Curve 13
2.3 Monetary policy rule 14
2.4 Model Summary 15
2.4.1 Matrix Form 16
2.4.2 Method of Undetermined Coefficients: for monetary policy shock 17
A Linearization Methods 20
A. 1 Example: Consumption Euler equation 21
A.1.1 Ordinary Taylor exapansion 21
A.1.2 Log transformation 22
A.1.3 Log linearization 22

1 Introduction

This course introduces students to the New Keynesian model. We will derive the New Keynesian Phillips Curve from nominal rigidities, and then study how it interacts with aggregate demand to jointly determine output, employment and inflation over the business cycle. In so doing we will examine various dimensions of monetary and fiscal policies, both in normal times and during liquidity traps.

Disclaimer: These notes follow closely the Macro II - New Keynesian Economics lectures by Edouard Challe. They should be seen as a complement to the lecture, not as a substitute, and I hope they will help you in studying the lecture's topics. The main part of the notes covers the material discussed in class. The appendix provides an overview of linearization techniques that students will be required to use in problem sets. If there are any mistakes or typos in the notes or conflicts with information provided in the lecture, please drop me an email david.mccarthy@eui.eu. When in doubt (or for what is relevant in the exam), always rely on the lecture material provided by Edouard.

These notes are loosely built around a number of references. The main textbook for the material covered here is Galí (2015), Challe (2019) is an useful textbook for an advanced undergraduate-level presentation of the New Keynesian Model. In addition, we cite relevant research papers where applicable.

2 The Basic New Keynesian Model

The model consists of households, firms, and a central bank. Households supply labor, purchase goods for consumption, and hold bonds, while firms hire labor and produce and sell differentiated products in monopolistic competitive goods markets. The basic model of monopolistic competition is drawn from Dixit and Stiglitz (1977). The model of price stickiness is taken from Calvo (1983). Each firm sets the price of the good it produces, but not all firms reset their price in each period. Households and firms behave optimally. Households maximize the expected present value of utility, and firms maximize profits. There is also a central bank that controls the nominal interest rate.

2.1 Households

Taking as given prices of all consumption goods $P_{t}(i), i \in[0,1]$, bond price, $Q_{t}{ }^{1}$, nominal wage rate, W_{t}, the representative household solves the following optimization problem:

$$
\max _{\left\{C_{t}, N_{t}, B_{t}\right\}_{t=0}^{\infty}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} U\left(C_{t}, N_{t}\right)
$$

where

$$
\begin{equation*}
C_{t} \equiv\left(\int_{0}^{1} C_{t}(i)^{\frac{\epsilon-1}{\epsilon}} d i\right)^{\frac{\epsilon}{\epsilon-1}}, \quad \forall t, \quad \varepsilon>1 \tag{1}
\end{equation*}
$$

s.t.

$$
\begin{gather*}
\int_{0}^{1} P_{t}(i) C_{t}(i) d i+Q_{t} B_{t} \leq B_{t-1}+W_{t} N_{t}+D_{t}, \quad \forall t \tag{2}\\
B_{-1} \text { given }
\end{gather*}
$$

where N_{t} are total hours worked and B_{t} is the quantity of bonds bought. Equation (1) is called Dixit-Stiglitz or CES (Constant Elasticity of Substitution) aggregator. ${ }^{2}$ For simplicity, we can think about this as a firm that produces a final good, C_{t}, using as intermediates all the varieties $C_{t}(i), i \in[0,1]$.

To have a well-defined solution, the above sequence of budget constraints is supplemented

[^1]with the following No-Ponzi-Game condition:
$$
\lim _{k \rightarrow \infty} \mathbb{E}_{t}\left[\Lambda_{t, t+k} \frac{B_{t+k}}{P_{t+k}}\right] \geq 0, \quad \forall t, \quad \text { where } \quad \beta^{k} \Lambda_{t, t+k} \equiv \frac{\Lambda_{t+k} P_{t+k}}{\Lambda_{t} P_{t}} \equiv \beta^{k} \frac{U_{c, t+k}}{U_{c, t}}
$$
$\Lambda_{t, t+k}$ is the Marginal Rate of Intertemporal Substitution (MRIS) between time t and $t+k=($ real $)$ price at t of one good unit delivered at $t+k . \Lambda_{t}$ and Λ_{t+k} are the Lagrange multipliers associated with the budget constraints at t and $t+k$, respectively. The No-Ponzi-Game condition ensures that the household's debt does not explode over time.

2.1.1 Intratemporal Household Problem: Allocation of expenditures

The household decision problem can be dealt with in two stages. First, we start with the optimal allocation of a given consumption expenditure across the individual goods in the consumption basket. At each period t, the household chooses varieties $C_{t}(i)$ such that it minimizes the expenditure needed to obtain a given level of the aggregate consumption C_{t}^{*}, i.e. taking as given $P_{t}(i){ }^{3}$

$$
\begin{equation*}
\min _{C_{t}(i)} \int_{0}^{1} P_{t}(i) C_{t}(i) d i \tag{3}
\end{equation*}
$$

s.t.

$$
\left(\int_{0}^{1} C_{t}(i)^{\frac{\epsilon-1}{\epsilon}} d i\right)^{\frac{\epsilon}{\epsilon-1}} \equiv C_{t} \geq C_{t}^{*}
$$

The Lagrangian of this problem writes

$$
\mathcal{L}=\int_{0}^{1} P_{t}(i) C_{t}(i) d i+\lambda_{t}\left(C_{t}^{*}-\left(\int_{0}^{1} C_{t}(i)^{\frac{\epsilon-1}{\epsilon}} d i\right)^{\frac{\epsilon}{\epsilon-1}}\right)
$$

with associated First Order Condition (FOC)

$$
\begin{align*}
P_{t}(i) & =\lambda_{t} C_{t}(i)^{-\frac{1}{\epsilon}}\left(\int_{0}^{1} C_{t}(i)^{\frac{\epsilon-1}{\epsilon}} d i\right)^{\frac{1}{\epsilon-1}} \\
& =\lambda_{t} C_{t}(i)^{-\frac{1}{\epsilon}} C_{t}^{\frac{1}{\epsilon}} \\
& \Rightarrow \quad C_{t}(i)=\left(\frac{P_{t}(i)}{\lambda_{t}}\right)^{-\epsilon} C_{t}, \quad \forall i, t \tag{4}
\end{align*}
$$

[^2]Taking the ratio for two goods i and j yields

$$
C_{t}(i)=\left(\frac{P_{t}(i)}{P_{t}(j)}\right)^{-\epsilon} C_{t}(j) .
$$

Substituting into the consumption aggregator:

$$
\begin{aligned}
C_{t} & =\left(\int_{0}^{1}\left(\left(\frac{P_{t}(i)}{P_{t}(j)}\right)^{-\epsilon} C_{t}(j)\right)^{\frac{\epsilon-1}{\epsilon}} d i\right)^{\frac{\epsilon}{\epsilon-1}} \\
& =C_{t}(j) P_{t}(j)^{\epsilon}\left(\int_{0}^{1} P_{t}(i)^{1-\epsilon} d i\right)^{\frac{\epsilon}{\epsilon-1}}
\end{aligned}
$$

Using

$$
\begin{equation*}
P_{t}=\left(\int_{0}^{1} P_{t}(i)^{1-\epsilon} d i\right)^{\frac{1}{1-\epsilon}} \tag{5}
\end{equation*}
$$

we obtain the demand function on slide 5 .

$$
\begin{gather*}
C_{t}=C_{t}(j) P_{t}(j)^{\epsilon} P_{t}^{-\epsilon} \\
\Rightarrow \quad C_{t}(j)=\left(\frac{P_{t}(j)}{P_{t}}\right)^{-\epsilon} C_{t}, \quad \forall j \tag{6}
\end{gather*}
$$

By comparing (6) with (4) we can give an interpretation to λ in this setup. λ captures the reduction in expenditure when lowering the required C_{t} that we want to achieve by one marginal unit. Therefore we can also interpret it as the marginal cost, or price P_{t} of C_{t}. From (6) and (5) it is straightforward to verify that

$$
\begin{align*}
P_{t} & =\left(\int_{0}^{1} P_{t}(i)^{1-\epsilon} d i\right)^{\frac{1}{1-\epsilon}} \\
P_{t}^{1-\epsilon} & =\left(\int_{0}^{1} P_{t}(i)^{1-\epsilon} d i\right) \\
P_{t}^{1-\epsilon} & =\left(\int_{0}^{1} P_{t}(i) \frac{C_{t}(i)}{C_{t} P_{t}^{\epsilon}} d i\right) \\
\Rightarrow P_{t} C_{t} & =\int_{0}^{1} P_{t}(i) C_{t}(i) d i \tag{7}
\end{align*}
$$

so that we can rewrite the Budget Constraint accordingly

$$
\begin{equation*}
P_{t} C_{t}+Q_{t} B_{t} \leq B_{t-1}+W_{t} N_{t}+D_{t}, \quad \forall t \tag{8}
\end{equation*}
$$

2.1.2 Inter-Temporal Household Problem

The household solves the following optimization problem:

$$
\max _{C_{t}, N_{t}, B_{t}} \mathcal{L} \equiv \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}\left\{U\left(C_{t}, N_{t}\right)+\Lambda_{t}\left[B_{t-1}+W_{t} N_{t}+D_{t}-P_{t} C_{t}-Q_{t} B_{t}\right]\right\}
$$

Where Λ_{t} is the Lagrangian multiplier. We obtain the FOCs:

$$
\begin{align*}
& \frac{\partial \mathcal{L}(\cdot)}{\partial C_{t}}=0 \Longleftrightarrow \beta^{t}\left[U_{c}\left(C_{t}, N_{t}\right)-\Lambda_{t} P_{t}\right]=0 \tag{9}\\
& \frac{\partial \mathcal{L}(\cdot)}{\partial N_{t}}=0 \Longleftrightarrow \beta^{t}\left[U_{n}\left(C_{t}, N_{t}\right)+\Lambda_{t} W_{t}\right]=0 \tag{10}\\
& \frac{\partial \mathcal{L}(\cdot)}{\partial B_{t}}=0 \Longleftrightarrow-\beta^{t} \Lambda_{t} Q_{t}+\beta^{t+1} \Lambda_{t+1}=0 \tag{11}
\end{align*}
$$

Optimality Conditions

1. Labour Supply condition: from (9) and (10)

$$
-\frac{U_{n, t}}{U_{c, t}}=\frac{W_{t}}{P_{t}}
$$

2. Euler condition: from (9) and (11) with $Q_{t}=\frac{1}{1+i_{t}}$

$$
U_{c, t}=\beta \mathbb{E}_{t}\left[U_{c, t+1} \frac{\left(1+i_{t}\right) P_{t}}{P_{t+1}}\right]
$$

3. Transversality condition:

$$
\lim _{k \rightarrow \infty} \mathbb{E}_{t}\left[\Lambda_{t, t+k} \frac{B_{t+k}}{P_{t+k}}\right] \leq 0
$$

2.1.3 Linearized Optimality Conditions

We start by using the following functional form for the utility function:

$$
U\left(C_{t}, N_{t} ; Z_{t}\right)= \begin{cases}\left(\frac{C_{t}^{1-\sigma}-1}{1-\sigma}-\frac{N_{t}^{1+\varphi}}{1+\varphi}\right) Z_{t} & \text { for } \sigma \neq 1 \\ \left(\ln C_{t}-\frac{N_{t}^{1+\varphi}}{1+\varphi}\right) Z_{t} & \text { for } \sigma=1\end{cases}
$$

where Z_{t} is a preference shock and $Z_{t}=Z_{t-1}^{\rho} e^{\varepsilon_{t}}$.

The optimality conditions are then given by the following system of equations:

1. Labour Supply Condition:

$$
\frac{N_{t}^{\varphi}}{C_{t}^{-\sigma}}=\frac{W_{t}}{P_{t}}
$$

2. Euler Equation Condition:

$$
Z_{t} C_{t}^{-\sigma}=\beta \mathbb{E}_{t}\left[Z_{t+1} C_{t+1}^{-\sigma} \frac{\left(1+i_{t}\right) P_{t}}{P_{t+1}}\right]
$$

The linearized version of the optimality conditions is given by:

1. Linearized Labour Supply Condition:

$$
\sigma c_{t}+\varphi n_{t}=w_{t}-p_{t}
$$

2. Linearized Euler Equation Condition: (See Appendix for linearization methods)

$$
y_{t}=\mathbb{E}_{t} y_{t+1}-\frac{1}{\sigma}\left(i_{t}-\mathbb{E}_{t} \pi_{t+1}-\rho\right)+\frac{1}{\sigma}\left(1-\rho_{z}\right) z_{t}
$$

where

$$
y_{t}=c_{t}, \quad \pi_{t} \equiv \ln \Pi_{t}=p_{t}-p_{t-1} \quad \text { and } \quad \rho \equiv-\ln \beta
$$

2.1.4 Natural Equilibrium

Natural rate r_{t}^{n} adjusts to clear goods market so that

$$
y_{t}^{n}=\mathbb{E}_{t} y_{t+1}^{n}-\frac{1}{\sigma}\left(r_{t}^{n}-\rho\right)+\frac{1}{\sigma}\left(1-\rho_{z}\right) z_{t}
$$

2.1.5 Dynamic IS Curve

Use both Euler equations (actual - natural equilibrium) to get

$$
\widetilde{y}_{t}=\mathbb{E}_{t} \widetilde{y}_{t+1}-\frac{1}{\sigma}\left(i_{t}-\mathbb{E}_{t} \pi_{t+1}-r_{t}^{n}\right)
$$

- $\widetilde{y}_{t} \equiv y_{t}-y_{t}^{n}$ is the output gap (a measure of misalignment between AS and AD)
- $i_{t}-\mathbb{E}_{t} \pi_{t+1}-r_{t}^{n}$ is the interest-rate gap (a measure of monetary policy tightness)

2.2 Firms

Firms operate under monopolistic competition with market power determined by ϵ and produce differentiated goods by using labor N_{t} as their only source of input. Technology A_{t} is equal among firms, and the production function takes the following form:

$$
Y_{t}(i)=A_{t} N_{t}(i)
$$

where $Y_{t}(i)$ stands for the production of output i and

$$
a_{t}=\rho_{a} a_{t-1}+\varepsilon_{t}^{a}, \quad a \equiv \log A
$$

2.2.1 Aggregate price dynamics

Recall that

$$
P_{t} \equiv\left(\int_{0}^{1} P_{t}(i)^{1-\epsilon} d i\right)^{\frac{1}{1-\epsilon}}
$$

Sticky Prices à la Calvo 1983

- $\theta \in[0,1]=$ "stickiness"
- With probability θ, a firm must stick with its old price, i.e. $P_{t}(i)=P_{t-1}(i)$
- With probability $(1-\theta)$, a firm can optimize its price, P_{t}^{*}
- Demand function for each variety $i \in[0,1]^{4}: Y_{t}(i)=C_{t}(i)=C_{t} P_{t}^{\varepsilon} P_{t}(i)^{-\varepsilon}$

Equation (12) displays the aggregate price index under the Calvo pricing assumption.

$$
\begin{equation*}
P_{t}=\left(\theta P_{t-1}^{1-\epsilon}+(1-\theta) P_{t}^{* 1-\epsilon}\right)^{\frac{1}{1-\epsilon}} \tag{12}
\end{equation*}
$$

Where P_{t}^{*} is the optimal price chosen by the optimizing firms. As $\theta \rightarrow 0, P_{t}=P_{t}^{*}$ implies that all the firms can reset their prices as in a flexible price economy. By dividing both sides by P_{t-1}, equation (12) can also be rewritten in terms of gross inflation, $\Pi_{t}=\frac{P_{t}}{P_{t-1}}$.

$$
\begin{equation*}
\Pi_{t}^{1-\epsilon}=\theta+(1-\theta)\left(\frac{P_{t}^{*}}{P_{t-1}}\right)^{1-\epsilon} \tag{13}
\end{equation*}
$$

[^3]We log-linearize condition (12) around steady-state with zero inflation ($\bar{\Pi}=1$).

$$
\begin{aligned}
P_{t} & =\left(\theta P_{t-1}^{1-\epsilon}+(1-\theta) P_{t}^{* 1-\epsilon}\right)^{\frac{1}{1-\epsilon}} \\
P_{t}^{1-\varepsilon} & =\left(\theta P_{t-1}^{1-\epsilon}+(1-\theta) P_{t}^{* 1-\epsilon}\right) \\
1 & =\theta\left(\frac{P_{t-1}}{P_{t}}\right)^{1-\varepsilon}+(1-\theta)\left(\frac{P_{t}^{*}}{P_{t}}\right)^{1-\varepsilon} \\
1 & =\theta e^{(1-\varepsilon)\left(p_{t-1}-p_{t}\right)}+(1-\theta) e^{(1-\varepsilon)\left(p^{*}-p_{t}\right)}
\end{aligned}
$$

Next, we take the Taylor expansion and obtain:

$$
\begin{align*}
1 & =\theta+(1-\theta)+\theta e^{0}(1-\varepsilon)\left(p_{t-1}-\bar{p}\right)-\theta e^{0}(1-\varepsilon)\left(p_{t}-\bar{p}\right) \\
& +(1-\theta) e^{0}(1-\varepsilon)\left(p_{t}^{*}-\bar{p}\right)-(1-\theta) e^{0}(1-\varepsilon)\left(p_{t}-\bar{p}\right) \\
1 & =1+(1-\varepsilon)\left(\theta\left(\left(p_{t-1}-\bar{p}\right)-\left(p_{t}-\bar{p}\right)\right)+(1-\theta)\left(p_{t}^{*}-\bar{p}\right)-\left(p_{t}-\bar{p}\right)\right) \\
0 & =\theta\left(p_{t-1}-p_{t}\right)+(1-\theta)\left(p_{t}^{*}-p_{t}\right) \\
p_{t} & =\theta p_{t-1}+(1-\theta) p_{t}^{*} \\
\pi_{t} & =(1-\theta)\left(p_{t}^{*}-p_{t-1}\right) \tag{14}
\end{align*}
$$

2.2.2 Optimal Price Setting

Firm i 's value:

$$
V_{t}(i)=\mathbb{E}_{t} \sum_{k=0}^{\infty} \Lambda_{t, t+k}\left(\frac{P_{t+k}(i)-W_{t+k} / A_{t+k}}{P_{t+k}}\right) Y_{t+k}(i)
$$

- $W_{t} / A_{t}=$ nominal marginal cost (divided by P_{t} gives real marginal cost)
- $\mathcal{M}_{t}(i) \equiv \frac{P_{t}(i)}{W_{t} / A_{t}}=$ firm i 's markup (factor) $\Rightarrow P_{t}(i)-W_{t} / A_{t}=\left(\mathcal{M}_{t}(i)-1\right) \frac{W_{t}}{A_{t}}$

A price-resetting firm solves

$$
\begin{equation*}
\max _{P_{t}^{*}} \mathbb{E}_{t} \sum_{k=0}^{\infty} \theta^{k} \Lambda_{t, t+k}\left(\frac{P_{t}^{*}-W_{t+k} / A_{t+k}}{P_{t+k}}\right) Y_{t+k \mid t} \tag{15}
\end{equation*}
$$

Where $\Lambda_{t, t+k}=\beta^{k}\left(\frac{C_{t+k}}{C_{t}}\right)^{-\sigma} \frac{P_{t}}{P_{t+k}}$ is the stochastic discount factor. We assume that households own firms, so we assume that the two agents have the same discount factor.

$$
Y_{t+k \mid t}=\left(\frac{P_{t}^{*}}{P_{t+k}}\right)^{-\epsilon} C_{t+k}, \quad C_{t+k} \text { given }
$$

Substitute, rearrange:

$$
\max _{P_{t}^{*}} \mathbb{E}_{t} \sum_{k=0}^{\infty} \theta^{k} \Lambda_{t, t+k}\left(P_{t}^{* 1-\epsilon}-\frac{W_{t+k}}{A_{t+k}} P_{t}^{*-\epsilon}\right) \frac{C_{t+k}}{P_{t+k}^{1-\epsilon}}
$$

First Order Condition:

$$
\mathbb{E}_{t} \sum_{k=0}^{\infty} \theta^{k} \Lambda_{t, t+k}\left((1-\epsilon) P_{t}^{*-\epsilon}+\epsilon \frac{W_{t+k}}{A_{t+k}} P_{t}^{*-\epsilon-1}\right) \frac{C_{t+k}}{P_{t+k}^{1-\epsilon}}=0
$$

or

$$
\begin{equation*}
\mathbb{E}_{t} \sum_{k=0}^{\infty} \theta^{k} \Lambda_{t, t+k} Y_{t+k \mid t} \frac{P_{t}^{*}-\frac{\epsilon}{\epsilon-1} W_{t+k} / A_{t+k}}{P_{t+k}}=0 \tag{16}
\end{equation*}
$$

Flexible prices $(\theta=0)$:

$$
P_{t}^{*}=\underbrace{\frac{\epsilon}{\epsilon-1}}_{\text {desired markup } \mathcal{M}} \times \frac{W_{t}}{A_{t}}
$$

Perfect competition $(\epsilon \rightarrow \infty)$:

$$
P_{t}^{*} \rightarrow \frac{W_{t}}{A_{t}}
$$

Monopoly power implies $P_{t}^{*}>W_{t} / A_{t}$, while Calvo pricing implies that the FOC equates to zero a weighted sum of excess markups (the $P_{t}^{*}-\frac{\epsilon}{\epsilon-1} W_{t+k} / A_{t+k}$).

2.2.3 Linearize Pricing Rule

We take the optimality condition (16) associated with the firm problem and split the two components this way:

$$
\begin{equation*}
\sum_{k=0}^{\infty} \theta^{k} \mathbb{E}_{t}\left(\Lambda_{t, t+k} Y_{t+k \mid t} \frac{P_{t}^{*}}{P_{t+k}}\right)=\sum_{k=0}^{\infty} \theta^{k} \mathbb{E}_{t}\left(\Lambda_{t, t+k} Y_{t+k \mid t} \frac{\frac{\epsilon}{\epsilon-1} W_{t+k} / A_{t+k}}{P_{t+k}}\right) \tag{17}
\end{equation*}
$$

Steady state: $P_{t}=P_{t}^{*}=P_{t+k}=\bar{P}, Y_{t+k \mid t}=Y, W_{t+k \mid t}=\bar{W}, A_{t+k \mid t}=\bar{A}, \Lambda_{t, t+k}=\beta^{k}$.

Taylor expansion on both sides of (17):

$$
\begin{aligned}
\sum_{k=0}^{\infty} \theta^{k} \mathbb{E}_{t}\left(\Lambda_{t, t+k} Y_{t+k \mid t} \frac{P_{t}^{*}}{P_{t+k}}\right)= & \sum_{k=0}^{\infty} \theta^{k} \mathbb{E}_{t} \beta^{k} \bar{Y} \frac{\bar{P}}{\bar{P}} \\
& +\theta^{k} \mathbb{E}_{t} \bar{Y} \frac{\bar{P}}{\bar{P}}\left(\Lambda_{t, t+k}-\beta^{k}\right) \\
& +\theta^{k} \mathbb{E}_{t} \beta^{k} \bar{P} \frac{\bar{P}}{}\left(Y_{t+k \mid t}-\bar{Y}\right) \\
& +\theta^{k} \mathbb{E}_{t} \beta^{k} \bar{Y} \frac{1}{\bar{P}}\left(P_{t}^{*}-\bar{P}\right) \\
& -\theta^{k} \mathbb{E}_{t} \beta^{k} \bar{Y} \frac{\bar{P}}{\bar{P}}\left(P_{t+k}-\bar{P}\right) \\
\sum_{k=0}^{\infty} \theta^{k} \mathbb{E}_{t}\left(\Lambda_{t, t+k} Y_{t+k \mid t} \frac{\frac{\epsilon}{\epsilon-1} W_{t+k} / A_{t+k}}{P_{t+k}}\right) & =\sum_{k=0}^{\infty} \theta^{k} \mathbb{E}_{t} \beta^{k} \bar{Y} \frac{\epsilon}{\epsilon-1} \bar{W} / \bar{A} \\
& +\theta^{k} \mathbb{E}_{t} \bar{Y} \frac{\frac{\epsilon}{\epsilon-1} \bar{W} / \bar{A}}{\bar{P}}\left(\Lambda_{t, t+k}-\beta^{k}\right)+ \\
& +\theta^{k} \mathbb{E}_{t} \beta^{k} \frac{\frac{\epsilon}{\epsilon-1} \bar{W} / \bar{A}}{\bar{P}}\left(Y_{t+k \mid t}-\bar{Y}\right) \\
& +\theta^{k} \mathbb{E}_{t} \beta^{k} \bar{Y} \frac{\frac{\epsilon}{\epsilon-1} \frac{1}{A}}{\bar{P}}\left(W_{t+k}-\bar{W}\right) \\
& -\theta^{k} \mathbb{E}_{t} \beta^{k} \bar{Y} \frac{\frac{\epsilon}{\epsilon-1} \frac{\bar{W}}{A^{2}}}{\bar{P}}\left(A_{t+k}-\bar{A}\right) \\
& -\theta^{k} \mathbb{E}_{t} \beta^{k} \bar{Y} \frac{\frac{\epsilon}{\epsilon-1} \bar{W} / \bar{A}}{\bar{P}}\left(P_{t+k}-\bar{P}\right)
\end{aligned}
$$

By elimination and $\bar{P}=\frac{\epsilon}{\epsilon-1} \frac{\bar{W}}{A}$, the Taylor expansion of (17) delivers:

$$
\begin{aligned}
\sum_{k=0}^{\infty} \mathbb{E}_{t} \theta^{k} \beta^{k} \bar{Y} \frac{1}{\bar{P}}\left(P_{t}^{*}-\bar{P}\right) & =\sum_{k=0}^{\infty} \mathbb{E}_{t} \theta^{k} \beta^{k} \bar{Y} \frac{\frac{\epsilon}{\epsilon-1} \bar{W} / \bar{A}}{\bar{P}}\left(\frac{\left(W_{t+k}-\bar{W}\right)}{W}-\frac{\left(A_{t+k}-\bar{A}\right)}{A}\right) \\
\sum_{k=0}^{\infty} \mathbb{E}_{t} \theta^{k} \beta^{k} \hat{p}_{t}^{*} & =\sum_{k=0}^{\infty} \mathbb{E}_{t} \theta^{k} \beta^{k}\left(\hat{w}_{t+k}-\hat{a}_{t+k}\right) \\
\hat{p}_{t}^{*} \sum_{k=0}^{\infty} \beta^{k} \theta^{k} & =\sum_{k=0}^{\infty} \mathbb{E}_{t} \beta^{k} \theta^{k}\left(\hat{w}_{t+k}-\hat{a}_{t+k}\right) \\
\Longleftrightarrow p_{t}^{*} & =(1-\beta \theta) \sum_{k=0}^{\infty} \beta^{k} \theta^{k} \mathbb{E}_{t}\left(w_{t+k}-a_{t+k}\right) \\
\Longleftrightarrow p & =(1-\beta \theta) \sum_{k=0}^{\infty} \beta^{k} \theta^{k} \mathbb{E}_{t}(w-a)
\end{aligned}
$$

Combining these last two equations, we obtain the pricing rule:

$$
p_{t}^{*}-p=(1+\beta \theta) \sum_{k=0}^{\infty} \beta^{k} \theta^{k} \mathbb{E}_{t}\left(\left(w_{t+k}-a_{t+k}\right)-(w-a)\right)
$$

with $\mu=p-w-a$

$$
\begin{equation*}
p_{t}^{*}=\mu+(1-\beta \theta) \sum_{k=0}^{\infty} \beta^{k} \theta^{k} \mathbb{E}_{t}\left(w_{t+k}-a_{t+k}\right) \tag{18}
\end{equation*}
$$

Rearrange,

$$
\begin{align*}
p_{t}^{*} & =(1-\beta \theta) \mathbb{E}_{t} \sum_{k=0}^{\infty}(\beta \theta)^{k}\left(\mu+w_{t+k}-a_{t+k}\right) \\
p_{t}^{*} & =\beta \theta p_{t+1}^{*}+(1-\beta \theta)(\mu+\underbrace{\left.w_{t}-a_{t}\right)}_{\log \text { nominal marginal cost }} \\
& =\beta \theta p_{t+1}^{*}+(1-\beta \theta)(\mu+p_{t}+\underbrace{w_{t}-p_{t}-a_{t}}_{\text {log real marginal cost }}) \\
& =\beta \theta p_{t+1}^{*}+(1-\beta \theta)(\mu+p_{t}-\underbrace{\left(a_{t}+p_{t}-w_{t}\right)}_{\log \text { average markup } \mu_{t}}) \\
& =\beta \theta p_{t+1}^{*}+(1-\beta \theta)\left(p_{t}-\widehat{\mu}_{t}\right), \quad \widehat{\mu}_{t} \equiv \mu_{t}-\mu \tag{19}
\end{align*}
$$

2.2.4 New Keynesian Philips Curve

- pricing rule: $p_{t}^{*}=\beta \theta p_{t+1}^{*}+(1-\beta \theta)\left(p_{t}-\widehat{\mu}_{t}\right)$
- price level: $p_{t}=\theta p_{t-1}+(1-\theta) p_{t}^{*}$

Solve for $\pi_{t} \equiv p_{t}-p_{t-1}$ as a function of $\widehat{\mu}_{t}$:

$$
\pi_{t}=\beta \mathbb{E}_{t} \pi_{t+1}-\frac{(1-\theta)(1-\beta \theta)}{\theta} \widehat{\mu}_{t}
$$

Average markup:

$$
\begin{aligned}
\mu_{t} & =a_{t}-\left(w_{t}-p_{t}\right) \\
& =a_{t}-\left(\sigma c_{t}+\varphi n_{t}\right) \quad \text { (labor supply) } \\
& =a_{t}-\sigma y_{t}-\varphi\left(y_{t}-a_{t}\right) \quad \text { (labor demand) } \\
& =(1+\varphi) a_{t}-(\sigma+\varphi) y_{t}
\end{aligned}
$$

Markup with natural output (= (hypothetical) output under flexible prices). All firms set p_{t}^{*} so that $\mu_{t}=\mu$:

$$
\mu=(1+\varphi) a_{t}-(\sigma+\varphi) y_{t}^{n}
$$

Solving for y_{t}^{n}

$$
y_{t}^{n}=\underbrace{-\left(\frac{\mu}{\sigma+\varphi}\right)}_{\text {decreasing in } \mu}+\underbrace{\left(\frac{1+\varphi}{\sigma+\varphi}\right)}_{\equiv \psi_{y a}>0} a_{t}
$$

We infer the natural interest rate:

$$
\begin{aligned}
r_{t}^{n} & =\rho+\left(1-\rho_{z}\right) z_{t}+\sigma \mathbb{E}_{t} \Delta y_{t+1}^{n} \\
& =\rho+\left(1-\rho_{z}\right) z_{t}+\sigma \psi_{y a}\left(\rho_{a}-1\right) a_{t}
\end{aligned}
$$

From the expressions for μ_{t} and μ we get

$$
\underbrace{\mu_{t}-\mu}_{\widetilde{\mu}_{t}}=-(\sigma+\varphi) \underbrace{\left(y_{t}-y_{t}^{n}\right)}_{\text {output gap } \tilde{y}_{t}}
$$

and therefore we obtain the New Keynesian Philips Curve

$$
\pi_{t}=\beta \mathbb{E}_{t} \pi_{t+1}+\kappa \widetilde{y}_{t}
$$

where

$$
\kappa \equiv \frac{(1-\theta)(1-\beta \theta)}{\theta}(\sigma+\varphi) \geq 0
$$

2.3 Monetary policy rule

Model closed by interest-rate rule $i_{t}=f\left(\Omega_{t}, v_{t}\right)$ where

- $\Omega_{t}=$ set of observables (e.g., π_{t})
- $v_{t}=$ monetary policy shock (i.e., residual of policy rule)

Assume, for example:

$$
i_{t}=\rho+\phi_{\pi} \pi_{t}+\phi_{y}\left(y_{t}-y\right)+v_{t}
$$

where

$$
v_{t}=\rho_{v} v_{t-1}+\varepsilon_{t}^{v}
$$

Rewrite $y_{t}-y$ as follows:

$$
\begin{gathered}
y_{t}-y=\underbrace{y_{t}-y_{t}^{n}}_{=\widetilde{y}_{t}}+\underbrace{y_{t}^{n}-y}_{=\widehat{y}_{t}^{n}=\psi_{y a} a_{t}}=\widetilde{y}_{t}+\psi_{y a} a_{t} \\
\Rightarrow i_{t}=\rho+\phi_{\pi} \pi_{t}+\phi_{y}\left(\widetilde{y}_{t}+\psi_{y a} a_{t}\right)+v_{t}
\end{gathered}
$$

2.4 Model Summary

- Dynamic IS curve:

$$
\begin{equation*}
\widetilde{y}_{t}=\mathbb{E}_{t} \widetilde{y}_{t+1}-\frac{1}{\sigma}\left(i_{t}-\mathbb{E}_{t} \pi_{t+1}-r_{t}^{n}\right) \tag{20}
\end{equation*}
$$

- Natural rate of interest:

$$
r_{t}^{n}=\rho-\sigma\left(1-\rho_{a}\right) \psi_{y a} a_{t}+\left(1-\rho_{z}\right) z_{t}
$$

- NKPC:

$$
\begin{equation*}
\pi_{t}=\beta \mathbb{E}_{t} \pi_{t+1}+\kappa \widetilde{y}_{t} \tag{21}
\end{equation*}
$$

- Monetary policy rule:

$$
\begin{equation*}
i_{t}=\rho+\phi_{\pi} \pi_{t}+\phi_{y} \widetilde{y}_{t}+\phi_{y} \psi_{y a} a_{t}+v_{t} \tag{22}
\end{equation*}
$$

- Shocks:

$$
\begin{aligned}
z_{t} & =\rho_{z} z_{t-1}+\varepsilon_{t}^{z} \\
a_{t} & =\rho_{a} a_{t-1}+\varepsilon_{t}^{a} \\
v_{t} & =\rho_{v} v_{t-1}+\varepsilon_{t}^{v}
\end{aligned}
$$

2.4.1 Matrix Form

It is convenient to work with a reduced form representation of (20) and (21) who take into account the policy rule (22) under consideration. Plugging (22) in (20), we obtain the following equation for \tilde{y}_{t} :

$$
\begin{align*}
& \tilde{y}_{t}=E_{t} \tilde{y}_{t+1}-\frac{1}{\sigma}\left(i_{t}-E_{t} \pi_{t+1}-r_{t}^{n}\right) \\
&=E_{t} \tilde{y}_{t+1}-\frac{1}{\sigma}\left(\rho+\phi_{\pi} \pi_{t}+\phi_{y} \tilde{y}_{t}+\phi_{y} \psi_{y a} a_{t}+v_{t}-E_{t} \pi_{t+1}-\left(\rho-\sigma\left(1-\rho_{a}\right) \psi_{y a} a_{t}+\left(1-\rho_{z}\right) z_{t}\right)\right) \\
&=E_{t} \tilde{y}_{t+1}-\frac{1}{\sigma}\left(\phi_{\pi} \pi_{t}-E_{t} \pi_{t+1}+\phi_{y} \tilde{y}_{t}+\left(\phi_{y}+\sigma\left(1-\rho_{a}\right)\right) \psi_{y a} a_{t}+\left(1-\rho_{z}\right) z_{t}+v_{t}\right) \\
&=E_{t} \tilde{y}_{t+1}-\frac{1}{\sigma}\left(\phi_{\pi}\left(\beta E_{t} \pi_{t+1}+\kappa \tilde{y}_{t}\right)-E_{t} \pi_{t+1}+\phi_{y} \tilde{y}_{t}+\left(\phi_{y}+\sigma\left(1-\rho_{a}\right)\right) \psi_{y a} a_{t}+\left(1-\rho_{z}\right) z_{t}+v_{t}\right) \\
&=E_{t} \tilde{y}_{t+1}-\frac{1}{\sigma}\left(\left(\phi_{\pi} \beta-1\right) E_{t} \pi_{t+1}+\left(\phi_{y}+\phi_{\pi} \kappa\right) \tilde{y}_{t}+\left(\phi_{y}+\sigma\left(1-\rho_{a}\right)\right) \psi_{y a} a_{t}+\left(1-\rho_{z}\right) z_{t}+v_{t}\right) \\
& \tilde{y}_{t}=E_{t} \tilde{y}_{t+1}+\frac{1-\beta \phi_{\pi}}{\sigma} E_{t} \pi_{t+1}-\frac{\phi_{\pi} \kappa+\phi_{y}}{\sigma} \tilde{y}_{t}+\frac{\left(\phi_{y}+\sigma\left(1-\rho_{a}\right) \psi_{y a} a_{t}+\left(1-\rho_{z}\right) z_{t}+v_{t}\right)}{\sigma} \\
& \frac{\sigma+\phi_{\pi} \kappa+\phi_{y}}{\sigma} \tilde{y}_{t}=E_{t} \tilde{y}_{t+1}+\frac{1-\beta \phi_{\pi}}{\sigma} E_{t} \pi_{t+1}+\frac{\left(\phi_{y}+\sigma\left(1-\rho_{a}\right) \psi_{y a} a_{t}+\left(1-\rho_{z}\right) z_{t}+v_{t}\right)}{\sigma} \\
& \tilde{y}_{t}=\frac{1}{\sigma+\phi_{y}+\kappa \phi_{\pi}}\left[\sigma E_{t} \tilde{y}_{t+1}+\left(1-\beta \phi_{\pi}\right) E_{t} \pi_{t+1}+u_{t}\right] \tag{23}
\end{align*}
$$

where u_{t} is a composite shock term: $\left(\phi_{y}+\sigma\left(1-\rho_{a}\right) \psi_{y a} a_{t}+\left(1-\rho_{z}\right) z_{t}+v_{t}\right)$.
Equation (23) shows the current output gap as a function of the expected output gap, expected inflation, and shocks. We next achieve a similar representation of current inflation. Insert (23) into (21) and get:

$$
\begin{align*}
\pi_{t} & =\beta E_{t} \pi_{t+1}+\kappa\left\{\frac{1}{\sigma+\phi_{y}+\kappa \phi_{\pi}}\left[\sigma E_{t} \tilde{y}_{t+1}+\left(1-\beta \phi_{\pi}\right) E_{t} \pi_{t+1}+u_{t}\right]\right\} \\
& =\frac{\sigma \kappa}{\sigma+\phi_{y}+\kappa \phi_{\pi}} E_{t} \tilde{y}_{t+1}+\frac{\kappa\left(1-\beta \phi_{\pi}\right)+\beta\left(\sigma+\phi_{y}+\kappa \phi_{\pi}\right)}{\sigma+\phi_{y}+\kappa \phi_{\pi}} E_{t} \pi_{t+1}+\frac{\kappa}{\sigma+\phi_{y}+\kappa \phi_{\pi}} u_{t} \\
& =\frac{\sigma \kappa}{\sigma+\phi_{y}+\kappa \phi_{\pi}} E_{t} \tilde{y}_{t+1}+\frac{\kappa+\beta\left(\sigma+\phi_{y}\right)}{\sigma+\phi_{y}+\kappa \phi_{\pi}} E_{t} \pi_{t+1}+\frac{\kappa}{\sigma+\phi_{y}+\kappa \phi_{\pi}} u_{t} \\
\pi_{t} & =\frac{1}{\sigma+\phi_{y}+\kappa \phi_{\pi}}\left(\sigma \kappa E_{t} \tilde{y}_{t+1}+\left[\kappa+\beta\left(\sigma+\phi_{y}\right)\right] E_{t} \pi_{t+1}+\kappa u_{t}\right) \tag{24}
\end{align*}
$$

Finally, the two equations (23) and (24) can be written as a system of forward looking difference equations:

$$
\begin{align*}
{\left[\begin{array}{l}
\tilde{y}_{t} \\
\pi_{t}
\end{array}\right] } & =\frac{1}{\sigma+\phi_{y}+\phi_{\pi} \kappa}\left[\begin{array}{cc}
\sigma & 1-\beta \phi_{\pi} \\
\sigma \kappa & \kappa+\beta\left(\sigma+\phi_{y}\right)
\end{array}\right]\left[\begin{array}{l}
E_{t} \tilde{y}_{t+1} \\
E_{t} \pi_{t+1}
\end{array}\right]+\frac{1}{\sigma+\phi_{y}+\phi_{\pi} \kappa}\left[\begin{array}{l}
1 \\
\kappa
\end{array}\right] u_{t} \\
& =\Omega\left[\begin{array}{cc}
\sigma & 1-\beta \phi_{\pi} \\
\sigma \kappa & \kappa+\beta\left(\sigma+\phi_{y}\right)
\end{array}\right]\left[\begin{array}{l}
E_{t} \tilde{y}_{t+1} \\
E_{t} \pi_{t+1}
\end{array}\right]+\Omega\left[\begin{array}{l}
1 \\
\kappa
\end{array}\right] u_{t} \\
& =\boldsymbol{A}_{T}\left[\begin{array}{c}
E_{t} \tilde{y}_{t+1} \\
E_{t} \pi_{t+1}
\end{array}\right]+\boldsymbol{B}_{T} u_{t} \tag{25}
\end{align*}
$$

The system is a reduced form representation of the dynamic IS curve and the New Keynesian Phillips curve, which takes into account effects from the policy defined in equation (22). The coefficient matrix \boldsymbol{A}_{T} represents effects from expectations on current output gap and inflation while the coefficient vector \boldsymbol{B}_{T} represents the effects from shocks in $u_{t}=\left(\phi_{y}+\sigma\left(1-\rho_{a}\right) \psi_{y a} a_{t}+\left(1-\rho_{z}\right) z_{t}+v_{t}\right)$.

2.4.2 Method of Undetermined Coefficients: for monetary policy shock

Assume that the exogenous component of (22) follows an $\operatorname{AR}(1)$ process, where $\rho_{v} \in[0,1)$:

$$
v_{t}=\rho_{v} v_{t-1}+\varepsilon_{t}^{v}
$$

Notice that a positive (negative) realization of ε_{t}^{v} is interpreted as a contractionary (expansionary) monetary policy shock, leading to a rise (decline) in the nominal interest rate for given levels of inflation and output gap. We want to find the contemporaneous effects of a monetary policy shock v_{t} on the output gap \tilde{y}_{t} and inflation π_{t}. One way to identify these effects is by using the method of undetermined coefficients.

1. First, we guess:

$$
\begin{equation*}
\tilde{y}_{t}=\psi_{y v} \rho_{v} v_{t}, \quad \tilde{\pi}_{t}=\psi_{\pi v} v_{t}, \quad E_{t} \tilde{y}_{t+1}=\psi_{y v} \rho_{v} v_{t}, \quad E_{t} \tilde{\pi}_{t}=\rho_{v} \psi_{\pi v} v_{t} \tag{26}
\end{equation*}
$$

2. In the second step, we substitute the above relations into the equations:

$$
\begin{gather*}
\psi_{y v} v_{t}=\psi_{y v} \rho_{v} v_{t}-\frac{1}{\sigma}\left(\phi_{\pi} \psi_{\pi v} v_{t}+\phi_{y} \psi_{y v} v_{t}-\psi_{\pi v} \rho_{v} v_{t}+v_{t}\right) \tag{27}\\
\psi_{\pi v} v_{t}=\beta \psi_{\pi v} \rho_{v} v_{t}+k \psi_{y v} v_{t} \tag{28}
\end{gather*}
$$

3. From (28) we get:

$$
\psi_{y v}=\frac{1-\beta \rho_{v}}{\kappa} \psi_{\pi v}
$$

4. Finally, in step four, we insert (26) in (23) solve for the coefficient

$$
\begin{aligned}
\psi_{y v} v_{t} & =E_{t} \psi_{y v} v_{t+1}-\frac{1}{\sigma}\left(\phi_{\pi} \psi_{\pi v} v_{t}+\phi_{y} \psi_{y v} v_{t}+v_{t}-E_{t} \psi_{\pi v} v_{t+1}\right) \\
& =\psi_{y v} \rho_{v} v_{t}-\frac{1}{\sigma}\left(\phi_{\pi} \psi_{\pi v} v_{t}+\phi_{y} \psi_{y v} v_{t}+v_{t}-\psi_{\pi v} \rho_{v} v_{t}\right) \\
& =\frac{\sigma \rho_{v}-\phi_{y}}{\sigma} \psi_{y v} v_{t}-\frac{\phi_{\pi}-\rho_{v}}{\sigma} \psi_{\pi v} v_{t}-\frac{1}{\sigma} v_{t} \sigma \psi_{y v} \\
-1 & =\left(\sigma \rho_{v}-\phi_{y}\right) \psi_{y v}-\left(\phi_{\pi}-\rho_{v}\right) \psi_{\pi v} \\
-1 & =\left[\sigma\left(1-\rho_{v}\right)+\phi_{y}\right] \psi_{y v}+\left(\phi_{\pi}-\rho_{v}\right) \psi_{\pi v} \\
-1 & =\left[\sigma\left(1-\rho_{v}\right)+\phi_{y}\right] \frac{1-\beta \rho_{v}}{\kappa} \psi_{\pi v}+\left(\phi_{\pi}-\rho_{v}\right) \psi_{\pi v} \\
-1 & =\frac{\left(1-\beta \rho_{v}\right)\left[\sigma\left(1-\rho_{v}\right)+\phi_{y}\right]+\kappa\left(\phi_{\pi}-\rho_{v}\right)}{\kappa} \psi_{\pi v} \\
\Rightarrow \psi_{\pi v} & =\frac{-\kappa}{\left(1-\beta \rho_{v}\right)\left[\sigma\left(1-\rho_{v}\right)+\phi_{y}\right]+\kappa\left(\phi_{\pi}-\rho_{v}\right)}=-\kappa \Lambda_{v}
\end{aligned}
$$

So we can write:

$$
\psi_{y v}=-\Lambda_{v}\left(1-\beta \rho_{v}\right), \quad \psi_{\pi v}=-k \Lambda_{v}
$$

Finally, this means that the solutions are:

$$
\begin{aligned}
& \tilde{y}_{t}=-\left(1-\beta \rho_{v}\right) \Lambda_{v} v_{t} \\
& \pi_{t}=-\kappa \Lambda_{v} v_{t}
\end{aligned}
$$

To ease the notation, $\Lambda_{v} \equiv \frac{1}{\left(1-\beta \rho_{v}\right)\left[\sigma\left(1-\rho_{v}\right)+\phi_{y}\right]+\kappa\left(\phi_{\pi}-\rho_{v}\right)}$.

References

Calvo, Guillermo A. (Sept. 1983). "Staggered Prices in a Utility-Maximizing Framework". In: Journal of Monetary Economics 12.3, pp. 383-398. ISSN: 0304-3932. DOI: 10.1016/ 0304-3932 (83) 90060-0. (Visited on 01/24/2024).

Challe, Edouard (Apr. 2019). Macroeconomic Fluctuations and Policies. MIT Press. ISBN: 978-0-262-35174-4.

Dixit, Avinash K. and Joseph E. Stiglitz (1977). "Monopolistic Competition and Optimum Product Diversity". In: The American Economic Review 67.3, pp. 297-308. ISSN: 00028282. JSTOR: 1831401. (Visited on $01 / 24 / 2024$).

Galí, Jordi (June 2015). Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New Keynesian Framework and Its Applications - Second Edition. Princeton University Press. ISBN: 978-0-691-16478-6.

A Linearization Methods

Linearization (and log-linearization) essentially consists of doing a Taylor expansion of a non-linear function. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then

$$
\begin{equation*}
f\left(x_{t}^{1}, \ldots, x_{t}^{n}\right) \approx f\left(x^{1}, \ldots, x^{n}\right)+\sum_{i=1}^{n} \frac{\partial}{\partial x^{i}} f\left(x^{1}, \ldots, x^{n}\right)\left(x_{t}^{i}-x^{i}\right) \tag{1}
\end{equation*}
$$

is a Taylor expansion of order 1 of the function f around the point $\left(x^{1}, \ldots, x^{n}\right)$.
Consider a level variable denoted X_{t}. Define $x_{t}=\log \left(X_{t}\right)$ and note $X(x=\log (X))$ its steady-state value. We define the hat variable, \hat{x}_{t}, as the log-deviation of X_{t} from its steady-state value, that is

$$
\begin{equation*}
\hat{x}_{t}=\log \left(X_{t}\right)-\log (X)=x_{t}-x . \tag{2}
\end{equation*}
$$

From (2), we can derive two important formulas that will prove very helpful. Note that (2) is equivalent to

$$
\hat{x}_{t}=\log \left(\frac{X_{t}}{X}\right)=\log \left(1+\frac{X_{t}-X}{X}\right),
$$

and

$$
\log (1+x) \approx \log (1)+\frac{1}{1+0}(x-0)=x
$$

We then obtain that

$$
\begin{equation*}
\hat{x}_{t} \approx \frac{X_{t}-X}{X} . \tag{3}
\end{equation*}
$$

From (2) we can also get the following formula

$$
\begin{equation*}
X_{t}=X e^{\hat{x}_{t}} \approx X\left(e^{0}+e^{0}\left(\hat{x}_{t}-0\right)\right)=X\left(1+\hat{x}_{t}\right), \tag{4}
\end{equation*}
$$

where the Taylor approximation was done around 0 as we have just shown above that the steady state of a hat variable is always zero. The last equality provides a direct formula to log-linearize without having to perform the Taylor expansion yourself. I would always
recommend doing these things yourself, but you may find some lecture notes that directly apply the formula $X_{t}=X\left(1+\hat{x}_{t}\right)$. The bottom line is that you should try different methods and understand that if done correctly they all yield the same result. Below I show how to log-linearize the Euler equation using multiple methods.

A. 1 Example: Consumption Euler equation

Let us consider the standard Euler equation with $\Pi_{t+1}=\frac{P_{t+1}}{P_{t}}$ and we do not have a preference shock Z_{t} as on page 7 of the lecture notes.

$$
C_{t}^{-\sigma}=\beta \mathbb{E}_{t}\left[C_{t+1}^{-\sigma} \frac{\left(1+i_{t}\right)}{\Pi_{t+1}}\right]
$$

where $\sigma>0$ is the coefficient of relative risk aversion. We can rewrite the Euler equation as:

$$
\begin{equation*}
1=\beta \mathbb{E}_{t}\left[\left(\frac{C_{t}}{C_{t+1}}\right)^{\sigma} \frac{\left(1+i_{t}\right)}{\Pi_{t+1}}\right] \tag{5}
\end{equation*}
$$

In steady-state, the Euler equation becomes:

$$
1=\beta\left[\left(\frac{C^{*}}{C^{*}}\right)^{\sigma} \frac{\left(1+i^{*}\right)}{\Pi^{*}}\right]
$$

where C^{*} is the steady-state value of consumption, i^{*} is the steady-state value of the nominal interest rate and $\Pi^{*}=1$ is the steady-state value of inflation. We find that in steady-state:

$$
\begin{aligned}
1 & =\beta\left(1+i^{*}\right) \\
\frac{1}{1+\rho} & =\beta \quad \Rightarrow i^{*}=\rho
\end{aligned}
$$

A.1.1 Ordinary Taylor exapansion

First, we can do a first-order Taylor expansion of the Euler equation (5) around the steady-state:

$$
\begin{aligned}
1=\beta\left[\left(\frac{C^{*}}{C^{*}}\right)^{\sigma} \frac{\left(1+i^{*}\right)}{\Pi^{*}}\right] & +\beta\left(\frac{\sigma\left(1+i^{*}\right)}{\Pi^{*}}\left(\frac{C^{*}}{C^{*}}\right)^{\sigma-1}\left(\left(C_{t}-C^{*}\right)-\left(\mathbb{E}_{t} C_{t+1}-C^{*}\right)\right)\right) \\
& +\beta\left[\left(\frac{C^{*}}{C^{*}}\right)^{\sigma} \frac{1}{\Pi^{*}}\right]\left(i_{t}-i^{*}\right) \\
& -\beta\left(\left(\frac{C^{*}}{C^{*}}\right)^{\sigma} \frac{\left(1+i^{*}\right)}{\Pi^{*}}\left(\frac{\mathbb{E}_{t} \Pi_{t+1}-\Pi^{*}}{\Pi^{*}}\right)\right)
\end{aligned}
$$

Some terms cancel, and we approximate the term $\frac{1}{1+i^{*}}=1$. If the discount factor is sufficiently high, this will be a good approximation. ${ }^{5}$ Then, we can rearrange the equation as follows:

$$
\begin{aligned}
& 0=\frac{\sigma\left(C_{t}-C^{*}\right)}{C^{*}}-\frac{\sigma\left(\mathbb{E}_{t} C_{t+1}-C^{*}\right)}{C^{*}}+\left(i_{t}-i^{*}\right)-\frac{\mathbb{E}_{t} \Pi_{t+1}-\Pi^{*}}{\Pi^{*}} \\
& 0=\sigma \hat{c}_{t}-\sigma \mathbb{E}_{t} \hat{c}_{t+1}+\left(i_{t}-i^{*}\right)-\mathbb{E}_{t} \hat{\pi}_{t+1} \\
& 0=\sigma\left(c_{t}-c\right)-\sigma\left(\mathbb{E}_{t} c_{t+1}-c\right)+\left(i_{t}-i^{*}\right)-\left(\mathbb{E}_{t} \pi_{t+1}-\pi\right)
\end{aligned}
$$

since $\pi=0$ and σc terms cancel each other out, we obtain

$$
\begin{align*}
0 & =\sigma c_{t}-\sigma\left(\mathbb{E}_{t} c_{t+1}+\left(i_{t}-i^{*}\right)-\mathbb{E}_{t} \pi_{t+1}\right. \tag{6}\\
c_{t} & =\mathbb{E}_{t} c_{t+1}-\frac{1}{\sigma}\left(i_{t}-\rho-\mathbb{E}_{t} \pi_{t+1}\right) \tag{7}
\end{align*}
$$

A.1.2 Log transformation

First, we can take logs of both sides of the Euler equation (5):

$$
\begin{aligned}
& \ln 1=\ln \beta+\ln \left(1+i_{t}\right)+\sigma \ln C_{t}-\sigma \mathbb{E}_{t} \ln C_{t+1}-\mathbb{E}_{t} \ln \Pi_{t+1} \\
& \ln 1=\ln \beta-\sigma \mathbb{E}_{t} c_{t+1}+\sigma c_{t}+i_{t}-\mathbb{E}_{t} \pi_{t+1}
\end{aligned}
$$

Note that, in the steady state, $1+i^{*}=\frac{1}{\beta}=1+\rho$, hence $i^{*}=\ln \left(1+i^{*}\right)=-\ln \beta$. Using this, we obtain the same equation as in (6):

$$
\begin{aligned}
\sigma c_{t} & =\sigma \mathbb{E}_{t}\left(c_{t+1}\right)+i^{*}-i_{t}+\mathbb{E}_{t} \pi_{t+1} \\
c_{t} & =\mathbb{E}_{t}\left(c_{t+1}\right)-\frac{1}{\sigma}\left(i_{t}-i^{*}-\mathbb{E}_{t} \pi_{t+1}\right) \\
c_{t} & =\mathbb{E}_{t}\left(c_{t+1}\right)-\frac{1}{\sigma}\left(i_{t}-\rho-\mathbb{E}_{t} \pi_{t+1}\right)
\end{aligned}
$$

A.1.3 Log linearization

We again start from the Euler equation (5), which we can rewrite as:

$$
\begin{equation*}
1=\beta e^{\left(\ln \left(1+i_{t}\right)+\sigma \ln C_{t}-\sigma \mathbb{E}_{t} \ln C_{t+1}-\mathbb{E}_{t} \ln \Pi_{t+1}\right)}=\beta e^{\left(i_{t}+\sigma c_{t}-\sigma \mathbb{E}_{t} c_{t+1}-\mathbb{E}_{t} \pi_{t+1}\right)} \tag{8}
\end{equation*}
$$

[^4]Now, we can do a first-order Taylor approximation of (7) around the steady state:

$$
\begin{aligned}
1 & =\beta e^{\left(i^{*}+\sigma c^{*}-\sigma c^{*}-\pi^{*}\right)} \\
& +\beta e^{\left(i^{*}+\sigma c^{*}-\sigma c^{*}-\pi^{*}\right)}\left(\sigma\left(c_{t}-c^{*}\right)-\sigma\left(\mathbb{E}_{t} c_{t+1}-c^{*}\right)+\left(i_{t}-i^{*}\right)-\left(\mathbb{E}_{t} \pi_{t+1}-\pi^{*}\right)\right) \\
1 & =1+1\left(\sigma\left(c_{t}-c^{*}\right)-\sigma\left(\mathbb{E}_{t} c_{t+1}-c^{*}\right)+\left(i_{t}-i^{*}\right)-\left(\mathbb{E}_{t} \pi_{t+1}-\pi^{*}\right)\right) \\
0 & =\sigma c_{t}-\sigma \mathbb{E}_{t} c_{t+1}+\left(i_{t}-i^{*}\right)-\mathbb{E}_{t} \pi_{t+1} \\
c_{t} & =\mathbb{E}_{t} c_{t+1}-\frac{1}{\sigma}\left(i_{t}-\rho-\mathbb{E}_{t} \pi_{t+1}\right)
\end{aligned}
$$

[^0]: *These lecture notes are based on Edouard Challe's lectures for Macroeconomics II - New Keynesian Economics at the EUI. Please report typos, mistakes, and comments to david.mccarthy@eui.eu.

[^1]: ${ }^{1} Q_{t}=\frac{1}{1+i_{t}}$ is the price paid in time t for a bond that gives safe return of 1 at time $\mathrm{t}+1$.
 ${ }^{2}$ The intuition behind this operator is very close to a CES utility function or production function.

[^2]: ${ }^{3}$ There are actually thwo equivalent ways to solve this: (i) minimizing total consumption expenditure on the variety of goods for a given level of aggregate consumption (shown below), or (ii) maximizing the utility of the representative household for a given level of aggregate consumption. This is the duality principle from Mas-Colell, Whinston and Green (1995)

[^3]: ${ }^{4}$ See Equation (6)

[^4]: ${ }^{5}$ See notes by Chris Sims, https://sites.nd.edu/esims/files/2023/05/ $\log _{\text {l }}$ inearization ${ }_{s} p 17$. .pdf

