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1 Introduction

This course introduces students to the New Keynesian model. We will derive the New

Keynesian Phillips Curve from nominal rigidities, and then study how it interacts with

aggregate demand to jointly determine output, employment and inflation over the business

cycle. In so doing we will examine various dimensions of monetary and fiscal policies, both

in normal times and during liquidity traps.

Disclaimer: These notes follow closely the Macro II - New Keynesian Economics lectures

by Edouard Challe. They should be seen as a complement to the lecture, not as a

substitute, and I hope they will help you in studying the lecture’s topics. The main part

of the notes covers the material discussed in class. The appendix provides an overview of

linearization techniques that students will be required to use in problem sets. If there are

any mistakes or typos in the notes or conflicts with information provided in the lecture,

please drop me an email david.mccarthy@eui.eu. When in doubt (or for what is relevant

in the exam), always rely on the lecture material provided by Edouard.

These notes are loosely built around a number of references. The main textbook for

the material covered here is Galí (2015), Challe (2019) is an useful textbook for an ad-

vanced undergraduate-level presentation of the New Keynesian Model. In addition, we

cite relevant research papers where applicable.
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2 The Basic New Keynesian Model

The model consists of households, firms, and a central bank. Households supply labor,

purchase goods for consumption, and hold bonds, while firms hire labor and produce and

sell differentiated products in monopolistic competitive goods markets. The basic model

of monopolistic competition is drawn from Dixit and Stiglitz (1977). The model of price

stickiness is taken from Calvo (1983). Each firm sets the price of the good it produces,

but not all firms reset their price in each period. Households and firms behave optimally.

Households maximize the expected present value of utility, and firms maximize profits.

There is also a central bank that controls the nominal interest rate.

2.1 Households

Taking as given prices of all consumption goods Pt(i), i ∈ [0, 1], bond price, Qt
1, nominal

wage rate, Wt, the representative household solves the following optimization problem:

max
{Ct,Nt,Bt}∞t=0

E0

∞∑
t=0

βtU (Ct, Nt)

where

Ct ≡
(∫ 1

0

Ct(i)
ϵ−1
ϵ di

) ϵ
ϵ−1

, ∀t, ε > 1 (1)

s.t. ∫ 1

0

Pt(i)Ct(i)di+QtBt ≤ Bt−1 +WtNt +Dt, ∀t (2)

B−1 given,

where Nt are total hours worked and Bt is the quantity of bonds bought. Equation

(1) is called Dixit-Stiglitz or CES (Constant Elasticity of Substitution) aggregator.2 For

simplicity, we can think about this as a firm that produces a final good, Ct, using as

intermediates all the varieties Ct(i), i ∈ [0, 1].

To have a well-defined solution, the above sequence of budget constraints is supplemented
1Qt =

1
1+it

is the price paid in time t for a bond that gives safe return of 1 at time t+1.
2The intuition behind this operator is very close to a CES utility function or production function.
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with the following No-Ponzi-Game condition:

lim
k→∞

Et
[
Λt,t+k

Bt+k

Pt+k

]
≥ 0, ∀t, where βkΛt,t+k ≡

Λt+kPt+k
ΛtPt

≡ βk
Uc,t+k
Uc,t

Λt,t+k is the Marginal Rate of Intertemporal Substitution (MRIS) between time t and

t+ k =(real) price at t of one good unit delivered at t+ k. Λt and Λt+k are the Lagrange

multipliers associated with the budget constraints at t and t + k, respectively. The No-

Ponzi-Game condition ensures that the household’s debt does not explode over time.

2.1.1 Intratemporal Household Problem: Allocation of expenditures

The household decision problem can be dealt with in two stages. First, we start with the

optimal allocation of a given consumption expenditure across the individual goods in the

consumption basket. At each period t, the household chooses varieties Ct(i) such that it

minimizes the expenditure needed to obtain a given level of the aggregate consumption

C∗
t , i.e. taking as given Pt(i).3

min
Ct(i)

∫ 1

0

Pt(i)Ct(i)di (3)

s.t. (∫ 1

0

Ct(i)
ϵ−1
ϵ di

) ϵ
ϵ−1

≡ Ct ≥ C∗
t

The Lagrangian of this problem writes

L =

∫ 1

0

Pt(i)Ct(i)di+ λt

(
C∗
t −

(∫ 1

0

Ct(i)
ϵ−1
ϵ di

) ϵ
ϵ−1

)

with associated First Order Condition (FOC)

Pt(i) = λtCt(i)
− 1

ϵ

(∫ 1

0

Ct(i)
ϵ−1
ϵ di

) 1
ϵ−1

= λtCt(i)
− 1

ϵC
1
ϵ
t

⇒ Ct(i) =

(
Pt(i)

λt

)−ϵ

Ct, ∀i, t (4)

3There are actually thwo equivalent ways to solve this: (i) minimizing total consumption expenditure
on the variety of goods for a given level of aggregate consumption (shown below), or (ii) maximizing the
utility of the representative household for a given level of aggregate consumption. This is the duality
principle from Mas-Colell, Whinston and Green (1995)
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Taking the ratio for two goods i and j yields

Ct(i) =

(
Pt(i)

Pt(j)

)−ϵ

Ct(j).

Substituting into the consumption aggregator:

Ct =

∫ 1

0

((
Pt(i)

Pt(j)

)−ϵ

Ct(j)

) ϵ−1
ϵ

di


ϵ

ϵ−1

= Ct(j)Pt(j)
ϵ

(∫ 1

0

Pt(i)
1−ϵdi

) ϵ
ϵ−1

Using

Pt =

(∫ 1

0

Pt(i)
1−ϵdi

) 1
1−ϵ

(5)

we obtain the demand function on slide 5.

Ct = Ct(j)Pt(j)
ϵP−ϵ

t

⇒ Ct(j) =

(
Pt(j)

Pt

)−ϵ

Ct, ∀j (6)

By comparing (6) with (4) we can give an interpretation to λ in this setup. λ captures

the reduction in expenditure when lowering the required Ct that we want to achieve by

one marginal unit. Therefore we can also interpret it as the marginal cost, or price Pt of

Ct. From (6) and (5) it is straightforward to verify that

Pt =

(∫ 1

0

Pt(i)
1−ϵdi

) 1
1−ϵ

P 1−ϵ
t =

(∫ 1

0

Pt(i)
1−ϵdi

)
P 1−ϵ
t =

(∫ 1

0

Pt(i)
Ct(i)

CtP ϵ
t

di

)
⇒ PtCt =

∫ 1

0

Pt(i)Ct(i)di (7)

so that we can rewrite the Budget Constraint accordingly

PtCt +QtBt ≤ Bt−1 +WtNt +Dt, ∀t (8)
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2.1.2 Inter-Temporal Household Problem

The household solves the following optimization problem:

max
Ct,Nt,Bt

L ≡ E0

∞∑
t=0

βt

{
U (Ct, Nt) + Λt

[
Bt−1 +WtNt +Dt − PtCt −QtBt

]}

Where Λt is the Lagrangian multiplier. We obtain the FOCs:

∂L(·)
∂Ct

= 0 ⇐⇒ βt [Uc (Ct, Nt)− ΛtPt] = 0 (9)

∂L(·)
∂Nt

= 0 ⇐⇒ βt [Un (Ct, Nt) + ΛtWt] = 0 (10)

∂L(·)
∂Bt

= 0 ⇐⇒ −βtΛtQt + βt+1Λt+1 = 0 (11)

Optimality Conditions

1. Labour Supply condition: from (9) and (10)

−Un,t
Uc,t

=
Wt

Pt

2. Euler condition: from (9) and (11) with Qt =
1

1+it

Uc,t = βEt
[
Uc,t+1

(1 + it)Pt
Pt+1

]
3. Transversality condition:

lim
k→∞

Et
[
Λt,t+k

Bt+k

Pt+k

]
≤ 0

2.1.3 Linearized Optimality Conditions

We start by using the following functional form for the utility function:

U (Ct, Nt;Zt) =


(
C1−σ

t −1

1−σ − N1+φ
t

1+φ

)
Zt for σ ̸= 1(

lnCt − N1+φ
t

1+φ

)
Zt for σ = 1

where Zt is a preference shock and Zt = Zρ
t−1e

εt .
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The optimality conditions are then given by the following system of equations:

1. Labour Supply Condition:

Nφ
t

C−σ
t

=
Wt

Pt

2. Euler Equation Condition:

ZtC
−σ
t = βEt

[
Zt+1C

−σ
t+1

(1 + it)Pt
Pt+1

]
The linearized version of the optimality conditions is given by:

1. Linearized Labour Supply Condition:

σct + φnt = wt − pt

2. Linearized Euler Equation Condition: (See Appendix for linearization methods)

yt = Etyt+1 −
1

σ
(it − Etπt+1 − ρ) +

1

σ
(1− ρz) zt

where

yt = ct, πt ≡ lnΠt = pt − pt−1 and ρ ≡ − ln β

2.1.4 Natural Equilibrium

Natural rate rnt adjusts to clear goods market so that

ynt = Etynt+1 −
1

σ
(rnt − ρ) +

1

σ
(1− ρz) zt

2.1.5 Dynamic IS Curve

Use both Euler equations (actual - natural equilibrium) to get

ỹt = Etỹt+1 −
1

σ
(it − Etπt+1 − rnt )

• ỹt ≡ yt − ynt is the output gap (a measure of misalignment between AS and AD)

• it − Etπt+1 − rnt is the interest-rate gap (a measure of monetary policy tightness)
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2.2 Firms

Firms operate under monopolistic competition with market power determined by ϵ and

produce differentiated goods by using labor Nt as their only source of input. Technology

At is equal among firms, and the production function takes the following form:

Yt(i) = AtNt(i)

where Yt(i) stands for the production of output i and

at = ρaat−1 + εat , a ≡ logA

2.2.1 Aggregate price dynamics

Recall that

Pt ≡
(∫ 1

0

Pt(i)
1−ϵdi

) 1
1−ϵ

Sticky Prices à la Calvo 1983

• θ ∈ [0, 1] = "stickiness"

• With probability θ, a firm must stick with its old price, i.e. Pt(i) = Pt−1(i)

• With probability (1− θ), a firm can optimize its price, P ∗
t

• Demand function for each variety i ∈ [0, 1]4: Yt(i) = Ct(i) = CtP
ε
t Pt(i)

−ε

Equation (12) displays the aggregate price index under the Calvo pricing assumption.

Pt =
(
θP 1−ϵ

t−1 + (1− θ)P ∗1−ϵ
t

) 1
1−ϵ (12)

Where P ∗
t is the optimal price chosen by the optimizing firms. As θ → 0, Pt = P ∗

t implies

that all the firms can reset their prices as in a flexible price economy. By dividing both

sides by Pt−1, equation (12) can also be rewritten in terms of gross inflation,Πt =
Pt

Pt−1
.

Π1−ϵ
t = θ + (1− θ)

(
P ∗
t

Pt−1

)1−ϵ

(13)

4See Equation (6)
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We log-linearize condition (12) around steady-state with zero inflation (Π̄ = 1).

Pt =
(
θP 1−ϵ

t−1 + (1− θ)P ∗1−ϵ
t

) 1
1−ϵ

P 1−ε
t =

(
θP 1−ϵ

t−1 + (1− θ)P ∗1−ϵ
t

)
1 = θ

(
Pt−1

Pt

)1−ε

+ (1− θ)

(
P ∗
t

Pt

)1−ε

1 = θe(1−ε)(pt−1−pt) + (1− θ)e(1−ε)(p
∗−pt)

Next, we take the Taylor expansion and obtain:

1 = θ + (1− θ) + θe0(1− ε) (pt−1 − p̄)− θe0(1− ε) (pt − p̄)

+ (1− θ)e0(1− ε) (p∗t − p̄)− (1− θ)e0(1− ε) (pt − p̄)

1 = 1 + (1− ε)

(
θ
(
(pt−1 − p̄)− (pt − p̄)

)
+ (1− θ) (p∗t − p̄)− (pt − p̄)

)
0 = θ(pt−1 − pt) + (1− θ)(p∗t − pt)

pt = θpt−1 + (1− θ)p∗t

πt = (1− θ) (p∗t − pt−1) (14)

2.2.2 Optimal Price Setting

Firm i ’s value:

Vt(i) = Et
∞∑
k=0

Λt,t+k

(
Pt+k(i)−Wt+k/At+k

Pt+k

)
Yt+k(i)

• Wt/At = nominal marginal cost (divided by Pt gives real marginal cost)

• Mt(i) ≡ Pt(i)
Wt/At

= firm i ’s markup (factor) ⇒ Pt(i)−Wt/At = (Mt(i)− 1) Wt

At

A price-resetting firm solves

max
P ∗
t

Et
∞∑
k=0

θkΛt,t+k

(
P ∗
t −Wt+k/At+k

Pt+k

)
Yt+k|t (15)

Where Λt,t+k = βk
(
Ct+k

Ct

)−σ
Pt

Pt+k
is the stochastic discount factor. We assume that house-

holds own firms, so we assume that the two agents have the same discount factor.

Yt+k|t =

(
P ∗
t

Pt+k

)−ϵ

Ct+k, Ct+k given
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Substitute, rearrange:

max
P ∗
t

Et
∞∑
k=0

θkΛt,t+k

(
P ∗1−ϵ
t − Wt+k

At+k
P ∗−ϵ
t

)
Ct+k

P 1−ϵ
t+k

First Order Condition:

Et
∞∑
k=0

θkΛt,t+k

(
(1− ϵ)P ∗−ϵ

t + ϵ
Wt+k

At+k
P ∗−ϵ−1
t

)
Ct+k

P 1−ϵ
t+k

= 0

or

Et
∞∑
k=0

θkΛt,t+kYt+k|t
P ∗
t − ϵ

ϵ−1
Wt+k/At+k

Pt+k
= 0 (16)

Flexible prices (θ = 0) :

P ∗
t =

ϵ

ϵ− 1︸ ︷︷ ︸
desired markup M

×Wt

At

Perfect competition (ϵ→ ∞) :

P ∗
t → Wt

At

Monopoly power implies P ∗
t > Wt/At, while Calvo pricing implies that the FOC equates

to zero a weighted sum of excess markups (the P ∗
t − ϵ

ϵ−1
Wt+k/At+k ).

2.2.3 Linearize Pricing Rule

We take the optimality condition (16) associated with the firm problem and split the two

components this way:

∞∑
k=0

θkEt
(
Λt,t+kYt+k|t

P ∗
t

Pt+k

)
=

∞∑
k=0

θkEt
(
Λt,t+kYt+k|t

ϵ
ϵ−1

Wt+k/At+k

Pt+k

)
(17)

Steady state: Pt = P ∗
t = Pt+k = P̄ , Yt+k|t = Y , Wt+k|t = W̄ , At+k|t = Ā, Λt,t+k = βk.
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Taylor expansion on both sides of (17):

∞∑
k=0

θkEt
(
Λt,t+kYt+k|t

P ∗
t

Pt+k

)
=

∞∑
k=0

θkEtβkȲ
P̄

P̄

+ θkEtȲ
P̄

P̄

(
Λt,t+k − βk

)
+ θkEtβk

P̄

P̄

(
Yt+k|t − Ȳ

)
+ θkEtβkȲ

1

P̄

(
P ∗
t − P̄

)
− θkEtβkȲ

P̄

P̄ 2

(
Pt+k − P̄

)

∞∑
k=0

θkEt
(
Λt,t+kYt+k|t

ϵ
ϵ−1

Wt+k/At+k

Pt+k

)
=

∞∑
k=0

θkEtβkȲ
ϵ
ϵ−1

W̄/Ā

P̄

+ θkEtȲ
ϵ
ϵ−1

W̄/Ā

P̄

(
Λt,t+k − βk

)
+

+ θkEtβk
ϵ
ϵ−1

W̄/Ā

P̄

(
Yt+k|t − Ȳ

)
+ θkEtβkȲ

ϵ
ϵ−1

1
Ā

P̄

(
Wt+k − W̄

)
− θkEtβkȲ

ϵ
ϵ−1

W̄
Ā2

P̄

(
At+k − Ā

)
− θkEtβkȲ

ϵ
ϵ−1

W̄/Ā

P̄ 2

(
Pt+k − P̄

)
By elimination and P̄ = ϵ

ϵ−1
W̄
Ā

, the Taylor expansion of (17) delivers:

∞∑
k=0

EtθkβkȲ
1

P̄

(
P ∗
t − P̄

)
=

∞∑
k=0

EtθkβkȲ
ϵ
ϵ−1

W̄/Ā

P̄

((
Wt+k − W̄

)
W

−
(
At+k − Ā

)
A

)
∞∑
k=0

Etθkβkp̂∗t =
∞∑
k=0

Etθkβk (ŵt+k − ât+k)

p̂∗t

∞∑
k=0

βkθk =
∞∑
k=0

Etβkθk (ŵt+k − ât+k)

⇐⇒ p∗t = (1− βθ)
∞∑
k=0

βkθkEt (wt+k − at+k)

⇐⇒ p = (1− βθ)
∞∑
k=0

βkθkEt (w − a)
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Combining these last two equations, we obtain the pricing rule:

p∗t − p = (1 + βθ)
∞∑
k=0

βkθkEt ((wt+k − at+k)− (w − a))

with µ = p− w − a

p∗t = µ+ (1− βθ)
∞∑
k=0

βkθkEt (wt+k − at+k) (18)

Rearrange,

p∗t = (1− βθ)Et
∞∑
k=0

(βθ)k (µ+ wt+k − at+k)

p∗t = βθp∗t+1 + (1− βθ)(µ+ wt − at)︸ ︷︷ ︸
log nominal marginal cost

= βθp∗t+1 + (1− βθ)(µ+ pt + wt − pt − at︸ ︷︷ ︸
log real marginal cost

)

= βθp∗t+1 + (1− βθ)(µ+ pt − (at + pt − wt)︸ ︷︷ ︸
log average markup µt

)

= βθp∗t+1 + (1− βθ) (pt − µ̂t) , µ̂t ≡ µt − µ (19)

2.2.4 New Keynesian Philips Curve

• pricing rule: p∗t = βθp∗t+1 + (1− βθ) (pt − µ̂t)

• price level: pt = θpt−1 + (1− θ)p∗t

Solve for πt ≡ pt − pt−1 as a function of µ̂t :

πt = βEtπt+1 −
(1− θ)(1− βθ)

θ
µ̂t

Average markup:

µt = at − (wt − pt)

= at − (σct + φnt) (labor supply)

= at − σyt − φ (yt − at) (labor demand)

= (1 + φ)at − (σ + φ)yt
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Markup with natural output (= ( hypothetical ) output under flexible prices). All firms

set p∗t so that µt = µ:

µ = (1 + φ)at − (σ + φ)ynt

Solving for ynt
ynt = −

(
µ

σ + φ

)
︸ ︷︷ ︸
decreasing in µ

+

(
1 + φ

σ + φ

)
︸ ︷︷ ︸

≡ψya>0

at

We infer the natural interest rate:

rnt = ρ+ (1− ρz) zt + σEt∆ynt+1

= ρ+ (1− ρz) zt + σψya (ρa − 1) at

From the expressions for µt and µ we get

µt − µ︸ ︷︷ ︸
µ̂t

= −(σ + φ) (yt − ynt )︸ ︷︷ ︸
output gap ỹt

and therefore we obtain the New Keynesian Philips Curve

πt = βEtπt+1 + κỹt

where

κ ≡ (1− θ)(1− βθ)

θ
(σ + φ) ≥ 0

2.3 Monetary policy rule

Model closed by interest-rate rule it = f (Ωt, vt) where

• Ωt = set of observables (e.g., πt )

• vt = monetary policy shock (i.e., residual of policy rule)

Assume, for example:

it = ρ+ ϕππt + ϕy (yt − y) + vt

where

vt = ρvvt−1 + εvt
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Rewrite yt − y as follows:

yt − y = yt − ynt︸ ︷︷ ︸
=ỹt

+ ynt − y︸ ︷︷ ︸
=ŷnt =ψyaat

= ỹt + ψyaat

⇒ it = ρ+ ϕππt + ϕy (ỹt + ψyaat) + vt

2.4 Model Summary

• Dynamic IS curve:

ỹt = Etỹt+1 −
1

σ
(it − Etπt+1 − rnt ) (20)

• Natural rate of interest:

rnt = ρ− σ (1− ρa)ψyaat + (1− ρz) zt

• NKPC:

πt = βEtπt+1 + κỹt (21)

• Monetary policy rule:

it = ρ+ ϕππt + ϕyỹt + ϕyψyaat + vt (22)

• Shocks:

zt = ρzzt−1 + εzt

at = ρaat−1 + εat

vt = ρvvt−1 + εvt

15



2.4.1 Matrix Form

It is convenient to work with a reduced form representation of (20) and (21) who take

into account the policy rule (22) under consideration. Plugging (22) in (20), we obtain

the following equation for ỹt:

ỹt = Etỹt+1 −
1

σ
(it − Etπt+1 − rnt )

= Etỹt+1 −
1

σ
(ρ+ ϕππt + ϕyỹt + ϕyψyaat + vt − Etπt+1 − (ρ− σ (1− ρa)ψyaat + (1− ρz) zt))

= Etỹt+1 −
1

σ

(
ϕππt − Etπt+1 + ϕyỹt + (ϕy + σ (1− ρa))ψyaat + (1− ρz) zt + vt

)
= Etỹt+1 −

1

σ

(
ϕπ(βEtπt+1 + κỹt)− Etπt+1 + ϕyỹt + (ϕy + σ (1− ρa))ψyaat + (1− ρz) zt + vt

)
= Etỹt+1 −

1

σ

(
(ϕπβ − 1)Etπt+1 + (ϕy + ϕπκ)ỹt + (ϕy + σ (1− ρa))ψyaat + (1− ρz) zt + vt

)
ỹt = Etỹt+1 +

1− βϕπ
σ

Etπt+1 −
ϕπκ+ ϕy

σ
ỹt +

(ϕy + σ (1− ρa)ψyaat + (1− ρz) zt + vt)

σ

σ + ϕπκ+ ϕy
σ

ỹt = Etỹt+1 +
1− βϕπ

σ
Etπt+1 +

(ϕy + σ (1− ρa)ψyaat + (1− ρz) zt + vt)

σ

ỹt =
1

σ + ϕy + κϕπ
[σEtỹt+1 + (1− βϕπ)Etπt+1 + ut] (23)

where ut is a composite shock term: (ϕy + σ (1− ρa)ψyaat + (1− ρz) zt + vt).

Equation (23) shows the current output gap as a function of the expected output gap, ex-

pected inflation, and shocks. We next achieve a similar representation of current inflation.

Insert (23) into (21) and get:

πt = βEtπt+1 + κ

{
1

σ + ϕy + κϕπ
[σEtỹt+1 + (1− βϕπ)Etπt+1 + ut]

}
=

σκ

σ + ϕy + κϕπ
Etỹt+1 +

κ (1− βϕπ) + β (σ + ϕy + κϕπ)

σ + ϕy + κϕπ
Etπt+1 +

κ

σ + ϕy + κϕπ
ut

=
σκ

σ + ϕy + κϕπ
Etỹt+1 +

κ+ β (σ + ϕy)

σ + ϕy + κϕπ
Etπt+1 +

κ

σ + ϕy + κϕπ
ut

πt =
1

σ + ϕy + κϕπ

(
σκEtỹt+1 + [κ+ β (σ + ϕy)]Etπt+1 + κut

)
(24)
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Finally, the two equations (23) and (24) can be written as a system of forward looking

difference equations:

 ỹt

πt

 =
1

σ + ϕy + ϕπκ

 σ 1− βϕπ

σκ κ+ β (σ + ϕy)

 Etỹt+1

Etπt+1

+
1

σ + ϕy + ϕπκ

 1

κ

ut
= Ω

 σ 1− βϕπ

σκ κ+ β (σ + ϕy)

 Etỹt+1

Etπt+1

+ Ω

 1

κ

ut
= AT

 Etỹt+1

Etπt+1

+BTut (25)

The system is a reduced form representation of the dynamic IS curve and the New Key-

nesian Phillips curve, which takes into account effects from the policy defined in equation

(22). The coefficient matrix AT represents effects from expectations on current output

gap and inflation while the coefficient vector BT represents the effects from shocks in

ut = (ϕy + σ (1− ρa)ψyaat + (1− ρz) zt + vt).

2.4.2 Method of Undetermined Coefficients: for monetary policy shock

Assume that the exogenous component of (22) follows an AR(1) process, where ρv ∈ [0, 1):

vt = ρvvt−1 + εvt

Notice that a positive (negative) realization of εvt is interpreted as a contractionary (ex-

pansionary) monetary policy shock, leading to a rise (decline) in the nominal interest rate

for given levels of inflation and output gap. We want to find the contemporaneous effects

of a monetary policy shock vt on the output gap ỹt and inflation πt. One way to identify

these effects is by using the method of undetermined coefficients.

1. First, we guess:

ỹt = ψyvρvvt, π̃t = ψπvvt, Etỹt+1 = ψyvρvvt, Etπ̃t = ρvψπvvt (26)
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2. In the second step, we substitute the above relations into the equations:

ψyvvt = ψyvρvvt −
1

σ
(ϕπψπvvt + ϕyψyvvt − ψπvρvvt + vt) (27)

ψπvvt = βψπvρvvt + kψyvvt (28)

3. From (28) we get:

ψyv =
1− βρv

κ
ψπv

4. Finally, in step four, we insert (26) in (23) solve for the coefficient

ψyvvt = Etψyvvt+1 −
1

σ
(ϕπψπvvt + ϕyψyvvt + vt − Etψπvvt+1)

= ψyvρvvt −
1

σ
(ϕπψπvvt + ϕyψyvvt + vt − ψπvρvvt)

=
σρv − ϕy

σ
ψyvvt −

ϕπ − ρv
σ

ψπvvt −
1

σ
vtσψyv

−1 = (σρv − ϕy)ψyv − (ϕπ − ρv)ψπv

−1 = [σ (1− ρv) + ϕy]ψyv + (ϕπ − ρv)ψπv

−1 = [σ (1− ρv) + ϕy]
1− βρv

κ
ψπv + (ϕπ − ρv)ψπv

−1 =
(1− βρv) [σ (1− ρv) + ϕy] + κ (ϕπ − ρv)

κ
ψπv

⇒ ψπv =
−κ

(1− βρv) [σ (1− ρv) + ϕy] + κ (ϕπ − ρv)
= −κΛv

So we can write:

ψyv = −Λv(1− βρv), ψπv = −kΛv

Finally, this means that the solutions are:

ỹt = − (1− βρv) Λvvt

πt = −κΛvvt

To ease the notation, Λv ≡ 1
(1−βρv)[σ(1−ρv)+ϕy ]+κ(ϕπ−ρv) .
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A Linearization Methods

Linearization (and log-linearization) essentially consists of doing a Taylor expansion of a

non-linear function. Suppose f : Rn → R, then

f(x1t , ..., x
n
t ) ≈ f(x1, ..., xn) +

n∑
i=1

∂

∂xi
f(x1, ..., xn)(xit − xi) , (1)

is a Taylor expansion of order 1 of the function f around the point (x1, ..., xn).

Consider a level variable denoted Xt. Define xt = log(Xt) and note X (x = log(X)) its

steady-state value. We define the hat variable, x̂t, as the log-deviation of Xt from its

steady-state value, that is

x̂t = log(Xt)− log(X) = xt − x . (2)

From (2), we can derive two important formulas that will prove very helpful. Note that

(2) is equivalent to

x̂t = log

(
Xt

X

)
= log

(
1 +

Xt −X

X

)
,

and

log(1 + x) ≈ log(1) +
1

1 + 0
(x− 0) = x .

We then obtain that

x̂t ≈
Xt −X

X
. (3)

From (2) we can also get the following formula

Xt = Xex̂t ≈ X(e0 + e0(x̂t − 0)) = X(1 + x̂t) , (4)

where the Taylor approximation was done around 0 as we have just shown above that the

steady state of a hat variable is always zero. The last equality provides a direct formula

to log-linearize without having to perform the Taylor expansion yourself. I would always
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recommend doing these things yourself, but you may find some lecture notes that directly

apply the formula Xt = X(1 + x̂t). The bottom line is that you should try different

methods and understand that if done correctly they all yield the same result. Below I

show how to log-linearize the Euler equation using multiple methods.

A.1 Example: Consumption Euler equation

Let us consider the standard Euler equation with Πt+1 = Pt+1

Pt
and we do not have a

preference shock Zt as on page 7 of the lecture notes.

C−σ
t = βEt

[
C−σ
t+1

(1 + it)

Πt+1

]

where σ > 0 is the coefficient of relative risk aversion. We can rewrite the Euler equation

as:

1 = βEt
[(

Ct
Ct+1

)σ
(1 + it)

Πt+1

]
(5)

In steady-state, the Euler equation becomes:

1 = β

[(
C∗

C∗

)σ
(1 + i∗)

Π∗

]

where C∗ is the steady-state value of consumption, i∗ is the steady-state value of the

nominal interest rate and Π∗ = 1 is the steady-state value of inflation. We find that in

steady-state:
1 = β(1 + i∗)

1

1 + ρ
= β ⇒ i∗ = ρ

A.1.1 Ordinary Taylor exapansion

First, we can do a first-order Taylor expansion of the Euler equation (5) around the

steady-state:

1 = β

[(
C∗

C∗

)σ
(1 + i∗)

Π∗

]
+ β

(
σ(1 + i∗)

Π∗

(
C∗

C∗

)σ−1

((Ct − C∗)− (EtCt+1 − C∗))

)

+ β

[(
C∗

C∗

)σ
1

Π∗

]
(it − i∗)

− β

((
C∗

C∗

)σ
(1 + i∗)

Π∗

(
EtΠt+1 − Π∗

Π∗

))
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Some terms cancel, and we approximate the term 1
1+i∗

= 1. If the discount factor is

sufficiently high, this will be a good approximation.5 Then, we can rearrange the equation

as follows:

0 =
σ(Ct − C∗)

C∗ − σ(EtCt+1 − C∗)

C∗ + (it − i∗)− EtΠt+1 − Π∗

Π∗

0 = σĉt − σEtĉt+1 + (it − i∗)− Etπ̂t+1

0 = σ (ct − c)− σ (Etct+1 − c) + (it − i∗)− (Etπt+1 − π)

since π = 0 and σc terms cancel each other out, we obtain (6)

0 = σct − σ(Etct+1 + (it − i∗)− Etπt+1

ct = Etct+1 −
1

σ
(it − ρ− Etπt+1) (7)

A.1.2 Log transformation

First, we can take logs of both sides of the Euler equation (5):

ln 1 = ln β + ln (1 + it) + σ lnCt − σEt lnCt+1 − Et lnΠt+1

ln 1 = ln β − σEtct+1 + σct + it − Etπt+1

Note that, in the steady state, 1 + i∗ = 1
β
= 1 + ρ, hence i∗ = ln (1 + i∗) = − ln β. Using

this, we obtain the same equation as in (6):

σct = σEt (ct+1) + i∗ − it + Etπt+1

ct = Et (ct+1)−
1

σ
(it − i∗ − Etπt+1)

ct = Et (ct+1)−
1

σ
(it − ρ− Etπt+1)

A.1.3 Log linearization

We again start from the Euler equation (5), which we can rewrite as:

1 = βe(ln(1+it)+σ lnCt−σEt lnCt+1−Et lnΠt+1) = βe(it+σct−σEtct+1−Etπt+1) (8)

5See notes by Chris Sims, https://sites.nd.edu/esims/files/2023/05/loglinearizationsp17.pdf
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Now, we can do a first-order Taylor approximation of (7) around the steady state:

1 = βe(i
∗+σc∗−σc∗−π∗)

+ βe(i
∗+σc∗−σc∗−π∗)

(
σ(ct − c∗)− σ(Etct+1 − c∗) + (it − i∗)− (Etπt+1 − π∗)

)
1 = 1 + 1

(
σ(ct − c∗)− σ(Etct+1 − c∗) + (it − i∗)− (Etπt+1 − π∗)

)
0 = σct − σEtct+1 + (it − i∗)− Etπt+1

ct = Etct+1 −
1

σ
(it − ρ− Etπt+1)
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